

Adaptive Computing Systems

Dr. José L. Muñoz DARPA/ITO

May 1998

Situation Today...

Architecture is already provided... software must do the best it can within those given constraints

ACS: Vision

Application-Enabled Configurable Computer

- Commodity technology dynamically specialized
- Life cycle performance upgrades
- Adapt to new threats
- Extend mission capabilities

Adaptive Computing Systems

"The microchip that rewires itself"

June 1997

"Computers that modify their hardware circuits as they operate are opening a new era in computer design. Because they can filter data rapidly, they excel at pattern recognition, image processing and encryption"

Goals

Performance benefits of Hardware with the flexibility of Software

Sample ACS Challenge problem: ATR/1 cu.ft. 500X better

100X - 1000X Performance improvement over micro-processor based systems

Defense testbeds: ACS Challenge Problems

Temporal re-use:
Dynamic adaptation at runtime

Power/area efficiency

Domain specific development environments

Sample ACS Benefit: Custom Precision Arithmetic

Current DSP Device Technology	DSP Chips Only	DSP With Micro- Accel
SHARC Chips	603	46
Micro-Accelerators	0	8

1999 DSP Device Technology	Next Gen DSP Chips Only	Next Gen DSP With Micro- Accel
HH SHARC Chips	242	18
Micro-Accelerators	0	8

Beamforming with STAP*
8-bit Mantissa Floating Point Arithmetic

Beamforming with STAP*
4-bit Mantissa Floating Point Arithmetic

^{* 32} Range Gates Used for Weight Generation

Sample ACS Benefit: ATR Template Matching

Bright Template

Surround Template

Test Image

Template A

Template B

Zone 1

Common to A/B

Zone 2

Unique to Template A

Zone 3

Unique to Template B

UCLA PCI/Myrinet board

Template additions:

Template A = Zone 1 + Zone 2

Template B = Zone 1 + Zone 3

Key challenge: Reconfiguration Time

Current reconfiguration times measured in msec are unacceptable for many applications... need nsec...

3 ORDERS OF MAGNITUDE IMPROVEMENT

Key Challenge: Compilation times

- From a high level language description to a working implementation
 - includes "place and route" times

4 orders of magnitude speedups are required in this area

ACS Design Flow

Roadmap

Defense testbeds Variable precision arithmetic

Multimode adaptive radio Runtime adaption

M gates/chip

ATR in 1 cu. ft. Fault tolerance

Challenge problems

Point-of-use encryption

Sonar: adaptive beamforming

FY97 FY98 FY99 FY00 FY01

20X ATR • IR-ATR demo • 100X ATR • STAP kernel • Reconfg mdl • JPEG demo

• HW obj lib • Image alg proto • Var prec lib • Khoros • C cmplr-SUIF• MatLab • Functional Prg Env

Hybrid

Fine

• NAPA 1000 • DSP/fpga bd • Heterog sys

• fpga/mem/risc • GP/fpga

1st 400K • 400K/chip • 1.6M gate/bd 1 M gate chip • uscale FT chip

Granularity

Insertion Opportunities

Surveillance Challenge Problem

Problem - SAR / ATR

40,000 sqnm / day @ 1 ft. Resolution

System Parameter	Current	Challenge	Scale Factor		
SAR Area Coverage Rate (sqnm / day @1 ft Res.)	1000	40,000*	40X (FOA, Indexer, Ident.)		
Number of Target Classes	6	30	5X (Indexer, Ident.)		
Level / Difficulty of CC&D 4 Orders of	Low Magnitude pr	High oblem scale	100X (Indexer) 10X (Ident.)		
4 Orders of Magnitude problem scale					

^{*}Corresponds to a data rate of 40 Megapixels / sec

Surveillance Challenge

Circa 1997

JSTARS SAR ATR Processor

Circa 1998

ORCA based two-level board

Circa 2000 . . . Network Enabled

ACS Challenge Problems

- Surveillance Challenge Problem (Sandia National Lab)
- IR Automatic Target Recognition: Tank Application (Night Vision Lab)
- Sonar Adantiv
 Sea Warfare Center)

Performance benefits of Hardware... Flexibility of Software

- Fault-tolerant/Low-pool
- RF Transient Signal Analysis (Los Alamos National Lab)
- Plume Detection and Laser Spectral Analysis (LANL)

www.ito.arpa.mil/ResearchAreas96/AdaptiveComputingSys.html